"Proton holes" in long-range proton transfer reactions in solution and enzymes: A theoretical analysis.

نویسندگان

  • Demian Riccardi
  • Peter König
  • Xavier Prat-Resina
  • Haibo Yu
  • Marcus Elstner
  • Thomas Frauenheim
  • Qiang Cui
چکیده

Proton transfers are fundamental to chemical processes in solution and biological systems. Often, the well-known Grotthuss mechanism is assumed where a series of sequential "proton hops" initiates from the donor and combines to produce the net transfer of a positive charge over a long distance. Although direct experimental evidence for the sequential proton hopping has been obtained recently, alternative mechanisms may be possible in complex molecular systems. To understand these events, all accessible protonation states of the mediating groups should be considered. This is exemplified by transfers through water where the individual water molecules can exist in three protonation states (water, hydronium, and hydroxide); as a result, an alternative to the Grotthuss mechanism for a proton transfer through water is to generate a hydroxide by first protonating the acceptor and then transfer the hydroxide toward the donor through water. The latter mechanism can be most generally described as the transfer of a "proton hole" from the acceptor to the donor where the "hole" characterizes the deprotonated state of any mediating molecule. This pathway is distinct and is rarely considered in the discussion of proton-transfer processes. Using a calibrated quantum mechanical/molecular mechanical (QM/MM) model and an effective sampling technique, we study proton transfers in two solution systems and in Carbonic Anhydrase II. Although the relative weight of the "proton hole" and Grotthuss mechanisms in a specific system is difficult to determine precisely using any computational approach, the current study establishes an energetics motivated framework that hinges on the donor/acceptor pKa values and electrostatics due to the environment to argue that the "proton hole" transfer is likely as important as the classical Grotthuss mechanism for proton transport in many complex molecular systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers

This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...

متن کامل

Theoretical Study on the Chemical Reactivity in the Armchair Single-walled Carbon Nanotube: Proton and Methyl Group Transfer

Proton transfer (PT) and methyl group transfer (MGT) occurring in small biomimetic systems, Formamide-Formamidic acid (FA-FI), and N-formyl-N-methylformamide-(E)-methyl N-formylformimidate (NMFA-NMFI) are investigated in the gas phase and in single-walled carbon nanotubes by using the density functional theory and the ONIOM approach. It is shown that PT reaction is disfavoured in single-walled ...

متن کامل

Quantum-chemical modeling of the stacking mechanism for the 1H-4H proton transfer in pyridine derivatives. A DFT study

The stacking mechanism of the 1H-4H proton transfer in 4-pyridone, 4-pyridinthione and p-aminopyridineare constructed. For quantitative description of this process by means of the quamtumchemicalmethod density functional theory (DFT) the activation energy (

متن کامل

Comparison of hydride, hydrogen atom, and proton-coupled electron transfer reactions.

A comparison of hydride, hydrogen atom, and proton-coupled electron transfer reactions is presented. Herein, hydride and hydrogen atom transfer refer to reactions in which the electrons and protons transfer between the same donor and acceptor, while proton-coupled electron transfer (PCET) refers to reactions in which the electrons and protons transfer between different centers. Within these def...

متن کامل

بررسی محاسباتی انتقال پروتون درون‌مولکولی ترکیب 3- نیترو- 1،2،4- تری آزول (NTO)

The effect of the presence of compounds such as H2O, NH3, UDMH and NH2-NH2 has been reported on the inter-molecular proton transfer of 3-Nitro-1,2,4-triazole (NTO) using quantum computing. Gaussian 09 program package has been used to calculate geometry optimization and all reactions with 6-311++G(d,p) basis set. In these studies, the substances mentioned in the molecular reactions act as a cata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 50  شماره 

صفحات  -

تاریخ انتشار 2006